

КАТАЛОГ ПРОДУКЦИИ И ПРОЕКТНЫХ РЕШЕНИЙ

СИСТЕМЫ НАКОПЛЕНИЯ ЗНЕРГИИ
И ИСТОЧНИКИ БЕСПЕРЕБОЙНОГО ПИТАНИЯ
С ПРИМЕНЕНИЕМ СУПЕРКОНДЕНСАТОРНЫХ
НАКОПИТЕЛЕЙ И ЛИТИЙ-ИОННЫХ БАТАРЕЙ

КАТАЛОГ ПРОДУКЦИИ И РЕШЕНИЙ НА БАЗЕ СУПЕРКОНДЕНСАТОРОВ И LI-ION БАТАРЕЙ

ПРОМЫШЛЕННОСТЬ

- ССПД, АСКУЭ, ПРОМЫШЛЕННАЯ АВТОМАТИЗАЦИЯ
- ЧАСТОТНО-РЕГУЛИРУЕМЫЕ ПРИВОДЫ
- MICROGRID УРОВНЯ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ
- ЗАПОРНО-РЕГУЛИРУЮЩАЯ АРМАТУРА (ЗРА)

ПРОМЫШЛЕННОСТЬ

ССПД | АСКУЭ | ПРОМЫШЛЕННАЯ АВТОМАТИЗАЦИЯ

- АВАРИЙНЫЙ ИСТОЧНИК ЭНЕРГИИ
- ОБЕСПЕЧЕНИЕ КАЧЕСТВЕННОГО ЭЛЕКТРОСНАБЖЕНИЯ
- КОМПЕНСАЦИЯ ПРОВАЛОВ НАПРЯЖЕНИЯ

ПРЕИМУЩЕСТВА

ГАРАНТИРОВАННОЕ ЭЛЕКТРОПИТАНИЕ В ЦЕПЯХ ПОСТОЯННОГО ТОКА

НАКОПЛЕНИЕ И ХРАНЕНИЕ ЭНЕРГИИ в системах резервного и аварийного электропитания.

ЭКСПЛУАТАЦИЯ

в диапазоне температур от -40°C до + 65°C.

обеспечение стабилизированным электропитанием

в штатном и аварийном режимах аппаратной части систем цифровизации, сбора и передачи информации, промышленной автоматизации.

СРОК СЛУЖБЫ

≥ 10 лет, 1 000 000 циклов заряд/разряд, не требует обслуживания.

НАКОПИТЕЛИ ЭНЕРГИИ

НСКБ-100-15

НСКБ-100-15-П с ограничением тока заряда

ЭЛЕКТРОТЕХНИЧЕСКИЕ ПАРАМЕТРЫ

МОДЕЛЬ НСКБ-ХХ-ХХ

STERNI OTEXNIT IECROIE HAR ARREST DI	The state of the s	O SERVICE AND A
Номинальная ёмкость в начале службы	100 Ф	100 Ф
допустимое отклонение	0+20%	0+20%
Номинальное рабочее напряжение U _{ном}	15 B	12 B
Максимальное рабочее напряжение $U_{_{_{_{Makc}}}}^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^$	16,2 B	15 B
Внутреннее сопротивление (ESR), не более	14,4 мОм	14,4 mOm
	10 А (подключение: клеммное)	5 А (подключение: клеммное)
Максимальный разрядный ток	322 А (подключение: силовые терминалы)	on (noglono terme: totelliminoe)
Максимальный ток утечки	11,6 MA	11,6 MA

Энергия, отдаваемая при разряде	9,8 кДж	9,8 кДж
Удельная энергия, кДж/кг	10,9 (подключение: силовые терминалы) 11,9 (подключение: клеммное)	10,0 (крепление: скоба под Din рейку)

ФИЗИЧЕСКИЕ ПАРАМЕТРЫ *

Масса 1.2 кг 1.3 кг	
1/2 Ni 1,3 Ni	

^{*} В зависимости от исполнения. Для детальной информации просим ознакомиться со спецификацией

ПРОМЫШЛЕННОСТЬ

ССПД | АСКУЭ | ПРОМЫШЛЕННАЯ АВТОМАТИЗАЦИЯ

- АВАРИЙНЫЙ ИСТОЧНИК ЭНЕРГИИ
- ОБЕСПЕЧЕНИЕ КАЧЕСТВЕННОГО ЭЛЕКТРОСНАБЖЕНИЯ
- КОМПЕНСАЦИЯ ПРОВАЛОВ НАПРЯЖЕНИЯ

ПРЕИМУЩЕСТВА

ГАРАНТИРОВАННОЕ ЭЛЕКТРОПИТАНИЕ В ЦЕПЯХ ПОСТОЯННОГО ТОКА

НАКОПЛЕНИЕ И ХРАНЕНИЕ ЭНЕРГИИ в системах резервного и аварийного электропитания.

ЭКСПЛУАТАЦИЯ

в диапазоне температур от -40°C до + 65°C.

ОБЕСПЕЧЕНИЕ СТАБИЛИЗИРОВАННЫМ ЭЛЕКТРОПИТАНИЕМ

в штатном и аварийном режимах аппаратной части систем цифровизации, сбора и передачи информации, промышленной автоматизации.

СРОК СЛУЖБЫ

≥ 10 лет, 1 000 000 циклов заряд/разряд, не требует обслуживания.

НАКОПИТЕЛИ ЭНЕРГИИ

НСКБ-120-12.5

НСКБ-36-25

МОДЕЛЬ НСКБ-ХХ-ХХ

ЭЛЕКТРОТЕХНИЧЕСКИЕ ПАРАМЕТРЫ

Номинальная ёмкость в начале службы	120 Ф	36 Ф
допустимое отклонение	0+20%	0+20%
	12.5 B	25 B
Максимальное рабочее напряжение Ü _{макс}	13.5 B	26,5 B
Внутреннее сопротивление (ESR), не более	12 мОм	40 мОм
	10 А (подключение: клеммное)	20 А (подключение: клеммное)
Максимальный разрядный ток	322 А (подключение:	199 А (подключение
	силовые терминалы)	силовые терминалы)
—————————————————————————————————————	11.6 mA	10 mA

МОЩНОСТЬ И ЭНЕРГИЯ

Энергия, отдаваемая при разряде	8.2 кДж	9,4 кДж
Удельная энергия, кДж/кг	6.3 кДж/кг	6,2 (крепление: скоба под Din рейку) 5,5 (крепление: фланцевое)

ФИЗИЧЕСКИЕ ПАРАМЕТРЫ *

Габариты	162 x 68 x 120 *	195 x 84,5 x 127,5 *
Масса	1,2 кг	1,7 кг

^{*}В зависимости от исполнения. Для детальной информации просим ознакомиться со спецификацией

СУПЕРКОНДЕНСАТОРНЫЕ ИСТОЧНИКИ БЕСПЕРЕБОЙНОГО ПИТАНИЯ (ИБП)

ПРОМЫШЛЕННОСТЬ

ССПД | АСКУЭ | ПРОМЫШЛЕННАЯ АВТОМАТИЗАЦИЯ

- АВАРИЙНЫЙ ИСТОЧНИК ЭНЕРГИИ
- ОБЕСПЕЧЕНИЕ КАЧЕСТВЕННОГО ЭЛЕКТРОСНАБЖЕНИЯ
- КОМПЕНСАЦИЯ ПРОВАЛОВ НАПРЯЖЕНИЯ

ПРЕИМУЩЕСТВА

ГАРАНТИРОВАННОЕ ЭЛЕКТРОПИТАНИЕ В ЦЕПЯХ ПОСТОЯННОГО ТОКА

НАКОПЛЕНИЕ И ХРАНЕНИЕ ЭНЕРГИИ

в системах резервного и аварийного электропитания.

ЭКСПЛУАТАЦИЯ

в диапазоне температур от -40°C до + 65°C.

ОБЕСПЕЧЕНИЕ СТАБИЛИЗИРОВАННЫМ ЭЛЕКТРОПИТАНИЕМ

в штатном и аварийном режимах аппаратной части систем цифровизации, сбора и передачи информации, промышленной автоматизации.

СРОК СЛУЖБЫ

≥ 10 лет, 1 000 000 циклов заряд/разряд, не требует обслуживания.

ИСТОЧНИК БЕСПЕРЕБОЙНОГО ПИТАНИЯ

МОДЕЛЬ ИПСК-120-24

ВХОДНЫЕ ПАРАМЕТРЫ

Габариты (ДхШхВ), мм

Масса

Диапазон входных напряжений	2030 B
Номинальная ёмкость	120 Ф
Потребляемый ток заряда (при отключенной нагрузке)	≤1A
Время заряда при полностью разряженном накопителе	≤ 36 мин
	≤ 15 A
Пороговое значение включения режима Разряд	20 B
Защита от ошибочного подключения	Есть
Управляющий вход «РС-режим»	24 В, 7мА
	24 В, 7мА
Входные терминалы (винт, зажим)	Клеммная колодка

ВЫХОДНЫЕ ПАРАМЕТРЫ

Выходное напряжение постоянного тока при отключенной нагрузке	22 24,5 B
Выходное напряжение постоянного тока при нагрузке 10 А/15 А	22,2 24,3 B / 22 24 B
Номинальный / максимальный ток на выходе	10 A / 15 A
Рассеиваемая мощность при номинальной нагрузке, не более	6 Вт
Ток короткого замыкания, не более	20 A
Защита выходного каскада	Электронный ограничитель тока 16 А
Выходные терминалы	Клеммная колодка
Сигнальный выход «Готовность» Сигнальный выход «Буферизация»	24B 20 MA 24B 20 MA
Байпас	Автоматический
Время поддержки нагрузки (ток 10 A), с	35 ± 5 %
Эффективность*:	
при нагрузке 10А	97,5%
при нагрузке 15А	97,3%

^{*} Эффективность - процент энергии, поступающей на полезную нагрузку, подключенную к устройству с полностью заряженным накопителем

211 x 130,5 x 116,4

1,8 кг

ПРОМЫШЛЕННОСТЬ

MICROGRID УРОВНЯ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ

СИСТЕМЫ НАКОПЛЕНИЯ ЭНЕРГИИ (СНЭ)

• ВЫСОКОМОЩНЫЙ МОДУЛЬНЫЙ НАКОПИТЕЛЬ ДЛЯ СИСТЕМ ХРАНЕНИЯ И РЕКУПЕРАЦИИ ЭНЕРГИИ С ВОЗМОЖНОСТЬЮ МАСШТАБИРОВАНИЯ ПО ЁМКОСТИ И НАПРЯЖЕНИЮ

ПРЕИМУЩЕСТВА

ВОЗМОЖНОСТЬ ПОСЛЕДОВАТЕЛЬНОГО ПОДКЛЮЧЕНИЯ МОДУЛЕЙ ДО 1500 В

МГНОВЕННОЕ РЕАКЦИЯ на динамические изменения в сети

СВЕРХВЫСОКАЯ МОЩНОСТЬ И СВЕРХНИЗКОЕ СОПРОТИВЛЕНИЕ

ПОДДЕРЖКА ПРОЦЕССОВ С ВЫСОКОЙ ЭНЕРГИЕЙ И МОЩНОСТЬЮ

ПОДДЕРЖКА ЛОКАЛЬНОЙ ГЕНЕРАЦИИ при пиковых нагрузках

ОБЕСПЕЧЕНИЕ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ

СРОК СЛУЖБЫ

≥ 10 лет, 1 000 000 циклов заряд/разряд не требует обслуживания.

ЭКСПЛУАТАЦИЯ

в диапазоне температур от -40°C до + 65°C.

НАКОПИТЕЛЬ ЭНЕРГИИ

МОДЕЛЬ НСКБ-83-102

ЭЛЕКТРОТЕХНИЧЕСКИЕ ПАРАМЕТРЫ

83 Ф 0+20%
102 B 108 B
11 MOM
2400 A
14,5 mA
5000 B

ПРОЧИЕ ПАРАМЕТРЫ

Блок питания вентилятора принудительного воздушного охлаждения	230 B (AC)
Активная балансировка	да
Мониторинг перегрева, перенапряжения	да

ФИЗИЧЕСКИЕ ПАРАМЕТРЫ

Габариты (Д х Ш х В), мм	484 x 548 x 177
Масса, не более	32 кг

^{*} Для детальной информации просим ознакомиться со спецификацией

ПРОМЫШЛЕННОСТЬ

MICROGRID УРОВНЯ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ

СИСТЕМЫ НАКОПЛЕНИЯ ЭНЕРГИИ (СНЭ)

• ВЫСОКОМОЩНЫЙ МОДУЛЬНЫЙ НАКОПИТЕЛЬ ДЛЯ СИСТЕМ ХРАНЕНИЯ И РЕКУПЕРАЦИИ ЭНЕРГИИ С ВОЗМОЖНОСТЬЮ МАСШТАБИРОВАНИЯ ПО ЁМКОСТИ И НАПРЯЖЕНИЮ

ПРЕИМУЩЕСТВА

ВОЗМОЖНОСТЬ ПОСЛЕДОВАТЕЛЬНОГО ПОДКЛЮЧЕНИЯ МОДУЛЕЙ ДО 1500 В

МГНОВЕННОЕ РЕАКЦИЯ на динамические изменения в сети

СВЕРХВЫСОКАЯ МОЩНОСТЬ И СВЕРХНИЗКОЕ СОПРОТИВЛЕНИЕ

ПОДДЕРЖКА ПРОЦЕССОВ С ВЫСОКОЙ ЭНЕРГИЕЙ И МОЩНОСТЬЮ

ПОДДЕРЖКА ЛОКАЛЬНОЙ ГЕНЕРАЦИИ при пиковых нагрузках

ОБЕСПЕЧЕНИЕ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ

СРОК СЛУЖБЫ

≥ 10 лет, 1 000 000 циклов заряд/разряд не требует обслуживания.

ЭКСПЛУАТАЦИЯ

в диапазоне температур от -40°C до + 65°C.

НАКОПИТЕЛЬ ЭНЕРГИИ

МОДЕЛЬ НСКБ-42-102

ЭЛЕКТРОТЕХНИЧЕСКИЕ ПАРАМЕТРЫ

Номинальная ёмкость в начале службы допустимое отклонение	42 Φ 0+20%
Номинальное рабочее напряжение U _{ном} Макс. импульсное напряжение, U _{имакс}	102 B 108 B
Внутреннее сопротивление (ESR)	15 мОм
Максимальный ток Разряд в течение 1 с. до 0.5Uном	1300 A
Максимальный внутренний ток утечки	8 mA
Электрическая прочность изоляции	5000 B

ПРОЧИЕ ПАРАМЕТРЫ

Блок питания вентилятора принудительного воздушного охлаждения	230 B (AC)
Активная балансировка	да
Мониторинг перегрева, перенапряжения	да

ФИЗИЧЕСКИЕ ПАРАМЕТРЫ

Габариты (Д х Ш х В), мм	484 x 548 x 130
Масса, не более	24 кг

^{*} Для детальной информации просим ознакомиться со спецификацией

ПРОМЫШЛЕННОСТЬ

MICROGRID УРОВНЯ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ | ПРОЕКТНЫЕ РЕШЕНИЯ

СИСТЕМЫ НАКОПЛЕНИЯ ЭНЕРГИИ (СНЭ)

- ОБЕСПЕЧЕНИЕ БЕСПЕРЕБОЙНОГО ПИТАНИЯ ПОТРЕБИТЕЛЕЙ
- КОМПЕНСАЦИЯ ПИКОВЫХ НАГРУЗОК
- ОБЕСПЕЧЕНИЕ КАЧЕСТВА ЭЛЕКТРОПИТАНИЯ

ПРЕИМУЩЕСТВА

АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ

частоты и перетоков активной мощности

ПОВЫШЕНИЕ НАДЁЖНОСТИ

электроснабжения потребителей

ЗАМЕЩЕНИЕ

«вращающегося» резерва

ОПТИМИЗАЦИЯ

установленной мощности генераторных агрегатов

и снижение расхода топлива на автономных электростанциях

ПОВЫШЕНИЕ КАЧЕСТВА

электроэнергии в узлах с резкопеременной нагрузкой

КОМПЕНСАЦИЯ

реактивной мощности и оптимизация её перетоков

ДЕМПФИРОВАНИЕ

нерегулярных колебаний активной мощности при помощи СНЭ

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ

электростанций на возобновляемых источниках энергии

ВЫРАВНИВАНИЕ

суточных графиков нагрузки

ЭКСПЛУАТАЦИЯ

в диапазоне температур от -40°C до + 65°C

СРОК СЛУЖБЫ

≥ 10 лет, 1 000 000 циклов заряд/разряд не требует обслуживания

^{*} Для детальной информации просим связаться со специалистами ООО «ТПС»

ПРОМЫШЛЕННОСТЬ

MICROGRID УРОВНЯ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ | ПРОЕКТНЫЕ РЕШЕНИЯ

СИСТЕМЫ РЕКУПЕРАЦИИ ЭНЕРГИИ И ДОБАВЛЕНИЯ МОЩНОСТИ

• ПОКРЫТИЕ ДЕФИЦИТА МОЩНОСТИ В ЭЛЕКТРОСЕТЯХ

ПРЕИМУЩЕСТВА

КОМПЕНСИРУЕТ ПИКОВУЮ НАГРУЗКУ

добавляет мощность

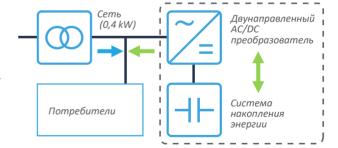
СИММЕТРИРУЕТ НАГРУЗКУ ПО ФАЗАМ

ПОДДЕРЖИВАЕТ КАЧЕСТВО НАПРЯЖЕНИЯ СЕТИ 0.4 кВ

РЕКУПЕРИРУЕТ ЭНЕРГИЮ

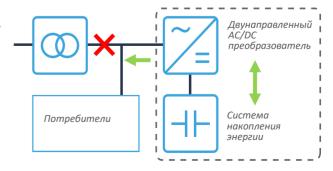
СРОК СЛУЖБЫ

≥ 10 лет, 1 000 000 циклов заряд/разряд, не требует обслуживания


ЭКСПЛУАТАЦИЯ

в диапазоне температур от -40°C до + 65°C

ОПИСАНИЕ РЕЖИМОВ РАБОТЫ


РЕЖИМ КОМПЕНСАЦИИ ПИКОВОЙ НАГРУЗКИ ЗА СЧЕТ ДОБАВЛЕНИЯ МОЩНОСТИ ОТ НАКОПИТЕЛЯ ЭНЕРГИИ:

- Система автоматически измеряет уровень мощности,
- При превышении порога потребления, автоматически добавляет мощность от накопителя для компенсации разницы между заданным порогом и потребляемой нагрузкой,
- Обратное переключение на питание от сети происходит автоматически при снятии перегрузки,
- При этом система добавления мощности переходит в режим накопления энергии (если не задан другой алгоритм поведения).

РЕЖИМ АВТОНОМНОГО ПИТАНИЯ НАГРУЗКИ:

- Система добавления мощности автоматически измеряет входное напряжение сети,
- При пропадании напряжения переходит в режим электроснабжения нагрузки от накопителя,
- Обратное переключение на питание от сети происходит автоматически при восстановлении сети,
- Система добавления мощности переходит в режим накопления энергии (если не задан другой алгоритм поведения).

^{*}Для детальной информации просим связаться со специалистами ООО «ТПС»

ПРОМЫШЛЕННОСТЬ

MICROGRID УРОВНЯ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ | ПРОЕКТНЫЕ РЕШЕНИЯ

ЭНЕРГОРОУТЕРЫ

- НАКОПЛЕНИЕ И ПЕРЕРАСПРЕДЕЛЕНИЕ МОЩНОСТИ СЕТЕЙ МЕЖДУ РАЗЛИЧНЫМИ ИСТОЧНИКАМИ ЭНЕРГИИ
- КОМПЕНСАЦИЯ ПИКОВЫХ НАГРУЗОК И ОБЕСПЕЧЕНИЕ БЕСПЕРЕБОЙНОГО ЭЛЕКТРОПИТАНИЯ
- РАСПРЕДЕЛЕННАЯ ГЕНЕРАЦИЯ
- ПОКРЫТИЕ ДЕФИЦИТА МОЩНОСТИ В ЭЛЕКТРОСЕТЯХ
- ОБЕСПЕЧЕНИЕ БЕСПЕРЕБОЙНОГО ПИТАНИЯ ПОТРЕБИТЕЛЕЙ

ПРЕИМУЩЕСТВА

ПЕРЕРАСПРЕДЕЛЕНИЕ

активной мощности потребителей между различными источниками энергии.

КОМПЕНСАЦИЯ ПИКОВЫХ НАГРУЗОК

с помощью накопителей энергии.

БАЛАНСИРОВАНИЕ НАГРУЗКИ

ОБЕСПЕЧЕНИЕ БЕСПЕРЕБОЙНОГО ПИТАНИЯ ПОТРЕБИТЕЛЕЙ

ОБЕСПЕЧЕНИЕ КАЧЕСТВА ЭЛЕКТРОПИТАНИЯ

КОМПЕНСАЦИЯ РЕАКТИВНОЙ СОСТАВЛЯЮЩЕЙ

нагрузки и требуемое качество электроэнергии в сети 0,4кВ.

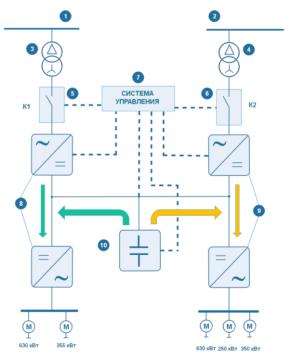
ПОКРЫТИЕ ДЕФИЦИТА МОЩНОСТИ В ЭЛЕКТРОСЕТЯХ

ЭКСПЛУАТАЦИЯ

в диапазоне температур от -40°C до + 65°C.

СРОК СЛУЖБЫ

 \geq 10 лет, 1 000 000 циклов заряд/разряд, не требует обслуживания.


ЭНЕРГОРОУТЕР С СУПЕРКОНДЕНСАТОРНЫМИ И LI-ION НАКОПИТЕЛЯМИ ЭНЕРГИИ

ПОЗВОЛЯЕТ ИСКЛЮЧИТЬ ИЗ СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНЯ:

- АВР автоматический ввод резерва;
- ИБП источник бесперебойного питания;
- СНЭ система накопления энергии;
- КРМ компенсатор реактивной мощности;
- Оборудование для симметрирования нагрузки.

Решение обеспечивает поддержку нагрузки как при полном отсутствии напряжения со стороны трансформаторов, так и при снижениях напряжения сети от номинального.

Поддержка мощности нагрузки частично из основной или дополнительной сети, частично энергией суперконденсаторного накопителя, либо полностью за счет энергии накопителя в зависимости от конкретной ситуации.

^{*} Для детальной информации просим связаться со специалистами ООО «ТПС»

ПРОМЫШЛЕННОСТЬ

MICROGRID УРОВНЯ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ І ПРОЕКТНЫЕ РЕШЕНИЯ

АСИММЕТРИЧНЫЕ СУПЕРКОНДЕНСАТОРНЫЕ ИБП

- ВСПОМОГАТЕЛЬНЫЙ ИСТОЧНИК ПИТАНИЯ ДЛЯ ПИКОВОЙ мошности
- КОМПЕНСАЦИЯ КРАТКОВРЕМЕННОЙ ИМПУЛЬСНОЙ СОСТАВЛЯЮЩЕЙ НАГРУЗКИ

ПРЕИМУЩЕСТВА

СНИЖЕНИЕ ТРЕБУЕМОЙ МОЩНОСТИ

питающих сетей и аварийных источников энергии до 50%

КОМПЕНСАЦИЯ ИМПУЛЬСНОЙ МОЩНОСТИ резкопеременной нагрузки

ОБЕСПЕЧЕНИЕ ЭЛЕКТРОСНАБЖЕНИЯ

нагрузки в аварийном режиме

СТАБИЛИЗАЦИЯ ПАРАМЕТРОВ электрической сети

МГНОВЕННАЯ ОТДАЧА МОЩНОСТИ,

требуемой нагрузкой

СНИЖЕНИЕ

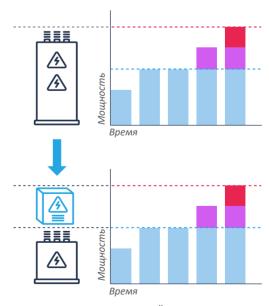
- эксплуатационных издержек и затрат на обслуживание до 50%
- капитальных затрат на создание новых подводимых мощностей до 50%

СРОК СЛУЖБЫ

≥ 10 лет, 1 000 000 циклов заряд/разряд не требует обслуживания

ЭКСПЛУАТАЦИЯ

в диапазоне температур от -40°C до + 65°C



ИННОВАЦИОННОСТЬ ПОДХОДА

- разрабатываемых Асимметричность ИБП (различие мощности на входе и выходе ИБП), за обеспечивается потребление из сети только номинальной мощности нагрузки
- Обеспечение компенсации импульсной части мощности нагрузки за счет суперконденсаторных накопителей, а не заранее заданной избыточной мощности питающей сети и организационных мероприятий

СХЕМЫ ПОДКЛЮЧЕНИЯ:

- Схема «on-line» с двойным преобразователем энергии (ПАТЕНТ № 180289 от 08.06.2018)
- Cxeмa «off-line» с двунаправленным инвертером (ПАТЕНТ № 180385 от 09.06.2018)

компенсация импульсной части мощности нагрузки за счет суперконденсаторных накопителей

^{*} Для детальной информации просим связаться со специалистами ООО «ТПС»

ПРОМЫШЛЕННОСТЬ

ЧАСТОТНО-РЕГУЛИРУЕМЫЕ ПРИВОДЫ (ЧРП) | ПРОЕКТНЫЕ РЕШЕНИЯ

 ПОДДЕРЖАНИЕ РАБОТЫ ЧРП ПРИ ПРОБЛЕМАХ С ЭЛЕКТРОСНАБЖЕНИЕМ

ПРЕИМУЩЕСТВА

СТАБИЛИЗАЦИЯ ПАРАМЕТРОВ НАПРЯЖЕНИЯ ШИНЫ ПОСТОЯННОГО ТОКА (ШПТ) ЧРП

обеспечивается способностью суперконденсаторов EDLC мгновенно брать или отдавать энергию

ЭКСПЛУАТАЦИЯ

в диапазоне температур от -40°C до + 65°C

МГНОВЕННОЕ РЕАГИРОВАНИЕ НА ИЗМЕНЕНИЕ ПАРАМЕТРОВ ШПТ

при изменении параметров нагрузки и параметров питающей сети

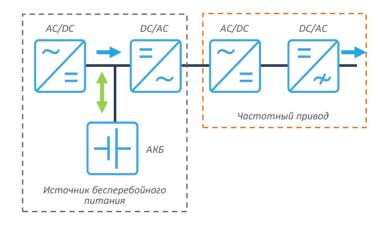
КОМПЕНСАЦИЯ ПРОВАЛОВ НАПРЯЖЕНИЯ ПО ШПТ в интервалах от 50 мсек до минут.

≥ 10 лет, 1 000 000 циклов заряд/разряд, не требует обслуживания

ΠΑΤΕΗΤ № 183734 ΟΤ 01.08.2018

НЕДОСТАТКИ РЕШЕНИЯ С ИСПОЛЬЗОВАНИЕМ КЛАССИЧЕСКИХ ИБП

Ограниченный ресурс работы, частые замены АКБ.


Необходимость в большой ёмкости АКБ в ИБП.

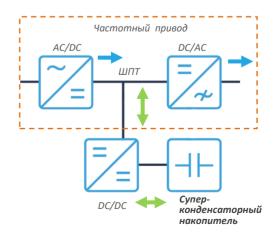
Медленная реакция на быстрые изменения в сети.

4 цикла преобразования, невысокий КПД.

ПРЕИМУЩЕСТВА РЕШЕНИЯ С ИСПОЛЬЗОВАНИЕМ СУПЕРКОНДЕНСАТОРНОГО ИБП В ШПТ ЧРП

Гарантированное время работы, большой срок службы — ≥ 10 лет (1 млн. циклов)

Простая и быстрая интеграция в существующие системы.



Быстрая реакция на провалы и импульсные нагрузки. Быстрый заряд/готовность к работе.

3 цикла преобразования, повышение КПД.

РЕШЕНИЕ ИНТЕГРИРУЕТСЯ КАК В ПРОЕКТИРУЕМЫЕ, ТАК И УЖЕ РАБОТАЮЩИЕ СИСТЕМЫ

^{*}Для детальной информации просим связаться со специалистами ООО «ТПС»

ПРОМЫШЛЕННОСТЬ

ЗАПОРНО-РЕГУЛИРУЮЩАЯ АРМАТУРА (ЗРА) | ПРОЕКТНЫЕ РЕШЕНИЯ

- ДОБАВЛЕНИЕ МОЩНОСТИ ДЛЯ ЗАПОРНЫХ МЕХАНИЗМОВ
- КОМПЕНСАЦИЯ ПРОВАЛОВ НАПРЯЖЕНИЯ

ПРЕИМУЩЕСТВА

ДОБАВЛЕНИЕ МОЩНОСТИ

для «дожатия» или «сдёргивания» запорных механизмов.

КОМПЕНСАЦИЯ ПРОВАЛОВ

напряжения сети и штатное выполнение задачи ЗРА.

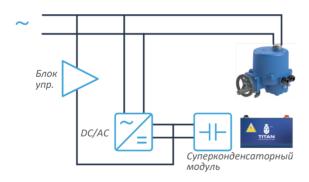
ЭКСПЛУАТАЦИЯ

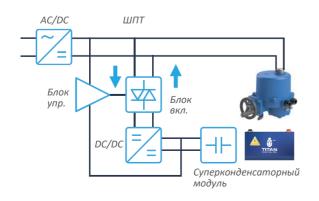
в диапазоне температур от -40°C до + 65°C.

СРОК СЛУЖБЫ

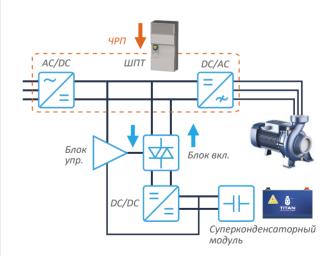
≥ 10лет, 1 000 000 циклов заряд/разряд не требует обслуживания.

КОРРЕКТНОЕ ЗАВЕРШЕНИЕ


рабочего цикла и перевод механизма ЗРА в охранное положение при пропадании внешнего электропитания.


ИСКЛЮЧАЕТ:

- перегрузку сети и риск отключения других устройств, питающихся от данной сети.
- риск возникновения аварийной ситуации или некорректной реакции на изменение состояния трубопровода.


СИСТЕМА ДЛЯ ПРИВОДОВ ЗРА ПЕРЕМЕННОГО ТОКА

СИСТЕМА ДЛЯ ПРИВОДОВ ЗРА ПОСТОЯННОГО ТОКА

СИСТЕМА ДЛЯ ИСПОЛЬЗОВАНИЯ НАКОПИТЕЛЯ С ЧРП

- Позволяет повысить КПД за счёт интеграции накопителя в ШПТ ЧРП.
- Исключает потери на многоступенчатые преобразования тока.

^{*} Для детальной информации просим связаться со специалистами ООО «ТПС»

РЕШЕНИЯ НА БАЗЕ СУПЕРКОНДЕНСАТОРОВ

ПОДЪЁМНО-ТРАНСПОРТНОЕ ОБОРУДОВАНИЕ

ПОДЪЁМНЫЕ КРАНЫ | ПРОЕКТНЫЕ РЕШЕНИЯ

ПОДКЛЮЧЕНИЕ СУПЕРКОНДЕНСАТОРНОГО НАКОПИТЕЛЯ ПО ШИНЕ ПОСТОЯННОГО ТОКА С ПРИМЕНЕНИЕМ ДВУНАПРАВЛЕННОГО DC/DC ПРЕОБРАЗОВАТЕЛЯ

ПРЕИМУЩЕСТВА

БЕСПЕРЕБОЙНОЕ ПИТАНИЕ КРАНОВ

- на срок от 1 до 60 сек на базе суперконденсаторного накопителя
- На срок от 1 до 15 минут на базе суперконденсаторного накопителя + АКБ

КОМПЕНСАЦИЯ ПИКОВОГО ТОКА ЧПР,

возникающего в процессе работы кранов

НАКОПЛЕНИЕ И РЕКУПЕРАЦИЯ ЭНЕРГИИ В

процессе торможения при опускании груза и ее использование при подъёме и ускорении

ЭКСПЛУАТАЦИЯ

В диапазоне температур от -40°C до + 65°C.

СРОК СЛУЖБЫ

≥ 10 лет, 1 000 000 циклов заряд/разряд, не требует обслуживания.

СХЕМА ПОДКЛЮЧЕНИЯ
СУПЕРКОНДЕНСАТОРНОГО
НАКОПИТЕЛЯ ЭНЕРГИИ ПО ШИНЕ
ПОСТОЯННОГО ТОКА К ОДИНОЧНОМУ
ЧРП С ПРИМЕНЕНИЕМ
ДВУНАПРАВЛЕННОГО DC/DC
ПРЕОБРАЗОВАТЕЛЯ

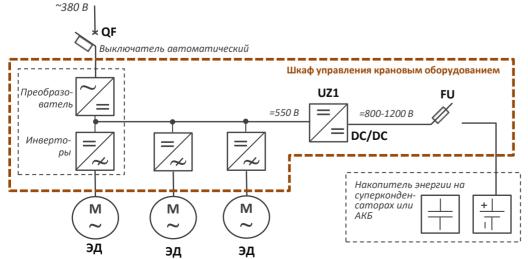


СХЕМА ПОДКЛЮЧЕНИЯ
СУПЕРКОНДЕНСАТОРНОГО НАКОПИТЕЛЯ
ЭНЕРГИИ ПО ОБЩЕЙ ШИНЕ
ПОСТОЯННОГО ТОКА К ЧРП КРАНОВОГО
ТИПА С ПРИМЕНЕНИЕМ
ДВУНАПРАВЛЕННОГО DC/DC
ПРЕОБРАЗОВАТЕЛЯ

РЕШЕНИЯ НА БАЗЕ СУПЕРКОНДЕНСАТОРОВ

ПОДЪЁМНО-ТРАНСПОРТНОЕ ОБОРУДОВАНИЕ

ПОДЪЁМНЫЕ КРАНЫ | ПРОЕКТНЫЕ РЕШЕНИЯ

ПОДКЛЮЧЕНИЕ СУПЕРКОНДЕНСАТОРНОГО НАКОПИТЕЛЯ К СЕТИ ПИТАНИЯ 380 ВОЛЬТ ПЕРЕМЕННОГО ТОКА С ПРИМЕНЕНИЕМ AC/DC КОНВЕРТЕРА

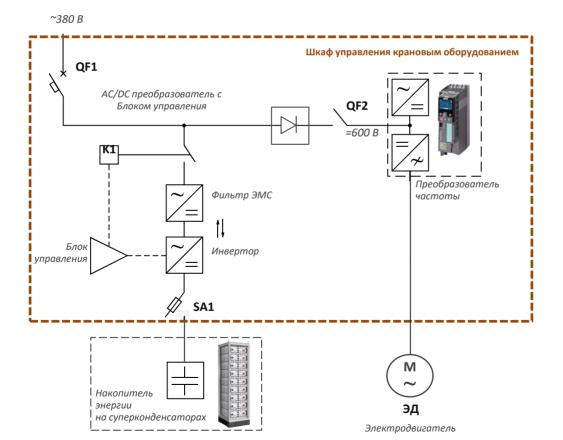
ПРЕИМУЩЕСТВА

НАКОПЛЕНИЕ И РЕКУПЕРАЦИЯ ЭНЕРГИИ В

процессе торможения при опускании груза и использование энергии при подъёме и ускорении

КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ

ПОДДЕРЖАНИЕ КАЧЕСТВА НАПРЯЖЕНИЯ СЕТИ


ЭКСПЛУАТАЦИЯ

В диапазоне температур от -40°C до + 65°C.

СРОК СЛУЖБЫ

≥ 10 лет, 1 000 000 циклов заряд/разряд, не требует обслуживания.

СХЕМА РЕКУПЕРАЦИИ ЭНЕРГИИ

с использованием AC/DC конвертера и суперконденсаторного накопителя энергии является универсальным решением для работы с любым типом ЧРП на крановом хозяйстве предприятий, и особенно эффективно при работе с частотными приводами свыше 90 кВт.

ЭКОНОМИЯ ДО 60%

от суммарно потребляемой оборудованием электроэнергии

РЕШЕНИЯ НА БАЗЕ СУПЕРКОНДЕНСАТОРОВ

ПОДЪЁМНО-ТРАНСПОРТНОЕ ОБОРУДОВАНИЕ

ПОДЪЁМНЫЕ КРАНЫ | СЕРИЙНАЯ ПРОДУКЦИЯ

ГАРАНТИРОВАННЫЙ ЗАПУСК ДИЗЕЛЬ-ГЕНЕРАТОРНОЙ УСТАНОВКИ РЕЗЕРВНОГО ПИТАНИЯ ПОРТОВЫХ КРАНОВ

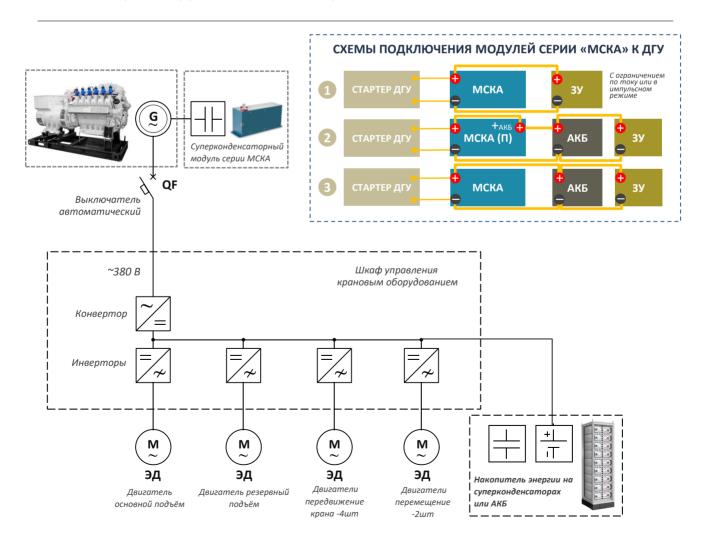
ПРЕИМУЩЕСТВА

ГАРАНТИРОВАННЫЙ ЗАПУСК ДГУ в условиях отключения основного питания портовых кранов и в диапазоне температур от -40°C до + 65°C

ПОЛНОЕ ИСКЛЮЧЕНИЕ ОБОРОТА СВИНЦОВО-КИСЛОТНЫХ БАТАРЕЙ (схема подключения №1)

ЗАПУСК ДГУ ОТ СИЛЬНО РАЗРЯЖЕННЫХ АКБ до 80%0 (8-9 Вольт) (схема подключения № 2)

СНИЖЕНИЕ НАГРУЗКИ НА АКБ и продление ее срока службы (схема подключения № 3)



СНИЖЕНИЕ УГЛЕРОДНОГО СЛЕДА за счет сокращения или полного исключения:

- Времени работы на холостом ходу
- Количества «холостых прокруток» ДВС

СРОК СЛУЖБЫ: ≥ 10 лет, 1 000 000 циклов заряд/разряд, не требует обслуживания

^{*} Модельный ряд модулей серии МСКА представлен в каталоге «Суперконденсаторные системы гарантированного запуска ДВС для транспортных средств и ДГУ».

ООО «ТАЙТЭН ПАУЭР СОЛЮШН»

ЭКСПЕРТ В ОБЛАСТИ РАЗРАБОТКИ РЕШЕНИЙ НА БАЗЕ СУПЕРКОНДЕНСАТОРОВ С 2013 ГОДА

- СИСТЕМЫ ГАРАНТИРОВАННОГО ЗАПУСКА ДВС ДЛЯ ТРАНСПОРТА И ДИЗЕЛЬ-ГЕНЕРАТОРНЫХ УСТАНОВОК
- СИСТЕМЫ НАКОПЛЕНИЯ ЭНЕРГИИ
- ИСТОЧНИКИ БЕСПЕРЕБОЙНОГО ПИТАНИЯ
- СИСТЕМЫ РЕКУПЕРАЦИИ ЭНЕРГИИ И ДОБАВЛЕНИЯ МОЩНОСТИ

ПРОМЫШЛЕННОСТЬ

ЭНЕРГЕТИКА

НЕФТЕГАЗОДОБЫЧА

ВЕТРОЭНЕРГЕТИКА

ДИЗЕЛЬ-ГЕНЕРАТОРНЫЕ УСТАНОВКИ

ПОДЪЁМНО-ТРАНСПОРТНОЕ ОБОРУДОВАНИЕ

ЖЕЛЕЗНОДОРОЖНЫЙ И ГОРОДСКОЙ ЭЛЕКТРОТРАНСПОРТ

АВТОТРАНСПОРТ

УМНЫЙ ГОРОД, АВТОМАТИЗАЦИЯ, ТЕЛЕКОММУНИКАЦИЯ



МЕДИЦИНСКОЕ ОБОРУДОВАНИЕ

ЭНЕРГЕТИЧЕСКАЯ И ЗАРЯДНАЯ ИНФРАСТРУКТУРА

ООО «ТАЙТЭН ПАУЭР СОЛЮШН»

117246, г. Москва, Научный проезд, д.20, стр.2 +7 (495) 401-66-68 | sales@titanps.ru | www.titanps.ru

